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A new study by He et al. in this issue of Neuron shows that large-scale arrhythmic (1/f) brain activity contains
nested temporal structure in the form of crossfrequency coupling. This suggests temporal organization in
neural mass activity beyond oscillations and draws attention to ubiquitous but often ignored arrhythmic
patterns in neural activity.
What do earthquakes, Dow-Jones, and

brain activity have in common? Unpre-

dictability first springs to mind, of course,

but as researchers have long noticed,

these and many other complex processes

might actually share common patterns

pertaining to long-range spatio-temporal

correlations of the underlying quantities

(Kello et al., 2010; Jensen, 1998). In addi-

tion, and as an intriguing study in this

issue of Neuron illustrates (He et al.,

2010), they might also share another level

of temporal organization, whereby the

phase of slower timescales predicts the

amplitude of faster ones. This nesting of

timescales might open a window onto

the complex structure of neural activity,

but also raises questions with regard to

its universality.

In their new study, He et al. recorded

electrocorticographic (ECoG) activity

across several brain areas in human

patients. To investigate the signal’s tem-

poral structure, they calculated the fre-

quency spectrum, i.e., the distribution of

amplitudes of individual frequency bands

as a function of frequency. In concor-

dance with previous studies, they des-

cribed the frequency spectra using the

power-law 1/fa, with the scaling factor

a differing between low (<1 Hz) and high

(>1 Hz) frequency bands. When shown

on logarithmic axes, such power-law

scaling translates into a straight line with

slope a, as illustrated in Figure 1A.

It is important to note the distinction

between the spectral 1/fa shape and

rhythmic oscillatory activity. Oscillatory

activities with well-defined frequencies

(e.g., theta, alpha, or gamma oscillations)

are prevalent in neural networks and result
in distinct peaks above the 1/fa back-

ground (Buzsaki, 2006) (cf. Figure 1A).

Typically, such oscillations result from

processes with well-defined intrinsic time-

scales and can be associated with defined

networks such as thalamocortical or

hippocampal loops. In contrast to this,

activity characterized by a (straight) 1/fa

spectrum is considered ‘‘arrhythmic,’’ as

it does not reflect processes with identifi-

able timescales. Systems that generate

perfect power-law spectra are also known

as ‘‘scale-free,’’ since the underlying pro-

cess or network possesses no distin-

guished scale (Bak et al., 1987; Jensen,

1998). Importantly, while oscillations

have attracted wide interest and are

matter of various speculations with regard

to their meaning and function, the ar-

rhythmic component of electric brain

activity is often considered self-evident

or uninteresting and hence ignored.

The stunning finding of He et al. is that

even such supposedly arrhythmic brain

activity has a complex temporal structure

in the form of crossfrequency phase-

amplitude coupling. Crossfrequency im-

plies that the coupling involves two

distinct frequency bands, and phase-

amplitude implies that the amplitude of

one band is dependent on the phase of

the other. In particular, He et al. extracted

band-limited components from their

wide-band signals and found that the

amplitude of the faster component de-

pends on the phase of the slower one,

as illustrated in Figure 1B. For their anal-

ysis they considered a range of frequency

pairs and used statistical bootstrapping

methods to validate the significance of

phase dependency. Overall, they found
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that more than 70% of the electrodes

contained frequency pairs with significant

frequency coupling. Importantly, and to

prove the importance of this phenom-

enon, they demonstrated the existence

of crossfrequency coupling not only in

resting state activity, but also during task

performance and slow-wave sleep.

Previously, such crossfrequency cou-

pling had only been noted in the context

of oscillatory activity. In auditory cortex,

for example, the amplitude of gamma

band (>30 Hz) oscillations or multiunit

spiking activity (>300 Hz) is modulated

by the phase of slow theta (4–8 Hz) or delta

(1–4 Hz) rhythms (Lakatos et al., 2005).

Yet, in contrast to He et al.’s study of

arrhythmic activity, theta or delta oscilla-

tions have a direct biophysical interpreta-

tion: troughs and peaks of the periodic

signal indicate periods of increased and

decreased local network excitability (Buz-

saki, 2006). The scaling of multiunit activity

with the phase of slow rhythms hence

reflects the dependency of neural re-

sponses on the local network state (Laka-

tos et al., 2005). Consistent with this inter-

pretation, a recent study reported that the

behavioral performance of subjects in

a visual task covaries with the phase of

slow occipital EEG rhythms, hence the

presumed excitability of visual cortex

(Busch et al., 2009). With arrhythmic

activity, on the other hand, there is no clear

biophysical interpretation of narrow-band

components. That the new study explicitly

reports crossfrequency coupling for elec-

trodes without distinct spectral peaks

(i.e., prominent oscillations) thus suggests

that crossfrequency coupling is more

widespread than previously thought and
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Figure 1.
(A) The upper panel displays a hypothetical power spectrum with 1/f2 shape
without distinct oscillations. The lower panel displays the same power spec-
trum with an added oscillation, visible as a clear peak above the straight line.
(B) Idealized example of phase-amplitude coupling. The upper two panels
illustrate two (oscillatory) signals of different frequencies. The gray line
displays the faster signal amplitude modulated by the slower signal, in such
a way that the amplitude of the faster signal peaks at the phase of p/2 of the
slower signal. The bottom panel displays the same in the form of a hypothetical
phase-separated amplitude histogram, as used in the discussed study.
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that it is relevant for

phenomena beyond brain

rhythms. Still, as the authors

themselves note, by

‘‘absence of evidence argu-

ment’’ their results can only

suggest but not prove cross-

frequency coupling in the

absence of oscillations.

Having shown the exis-

tence of crossfrequency

coupling in brain activity, the

authors then asked whether

similar frequency coupling

also occurs in other complex

processes that generate

power-law frequency spec-

tra. Power-law spectra char-

acterize processes with long-

range correlations and have

been reported for a wide

range of biological, physical,

and economic processes,

including avalanches, earth-

quakes, and economic

indices (Kello et al., 2010; Jen-

sen, 1998; Lima-Mendez and

van Helden, 2009). In their
study, He et al. applied their analysis

procedures to data recorded by seismom-

eters (earthquake detectors) and the

Dow-Jones Industrial Average index. To

their surprise, the authors found promi-

nent and widespread crossfrequency

coupling in both datasets, much as they

had observed in ECoG’s. In addition,

they also analyzed well-defined and simu-

lated toy processes. While these were

able to capture general properties of a

1/fa spectrum, most of them did not reveal

crossfrequency coupling. Surprisingly,

however, the authors found that pseudo-

random processes generated using

certain (imperfect) random number gener-

ators did show crossfrequency coupling,

perhaps a consequence of the determin-

istic means by which the numbers are

generated.

The combined evidence from the

different datasets lends itself to the spec-

ulation that this frequency coupling is

dependent on a combination of long-

range correlations and higher-order

statistical regularities in the underlying

processes. However, caution is required

when making such interpretations. First,

while long-range correlations or scale-

free properties have been mentioned in
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conjunction with biophysical processes,

it is important to note that simply being

able to describe data with a 1/fa curve

does not imply that the underlying pro-

cesses indeed concords with these theo-

retical concepts (Fiete et al., 2010; Kello

et al., 2010; Jensen, 1998; Lima-Mendez

and van Helden, 2009). For example the

linear superposition of a large number

of randomly occurring and exponentially

decaying postsynaptic currents can pro-

duce processes with long-range interac-

tions and can account for the spectral

shape of cortical field potentials (Bédard

and Destexhe, 2009; De Los Rios and

Zhang, 1999). Thus, whether long-range

correlations are indeed necessary for

frequency coupling remains to be tested.

In addition, the kind of higher-order

statistical regularities that could serve as

a source for crossfrequency coupling

remains to be elucidated. In this regard it

is interesting to note that the pattern of

frequency coupling was stable across

waking, slow-wave sleep, and a cued

button-press task, suggesting regularities

common to all these conditions. This

robustness stands in contrast to changes

observed in the frequency spectra, where

changes in spectral slope and the emer-
Inc.
gence of additional oscillatory

peaks were prominent across

conditions. It could be taken

to suggest that the observed

coupling reflects structural

(and hence stable) rather

than functional (and hence

dynamic) properties of the

underlying networks.

On the technical side, it

remains to be seen how

sensitive the results of He

et al. are with respect to

parameters used for the

extraction of band-limited

signal components. When

investigating distinct oscilla-

tions (e.g., theta or alpha

oscillations) the choice of

frequency ranges can be

straightforward. However,

when investigating arrhyth-

mic signals, a priori choices

must be made about the

frequency bands to be used,

and the choice of spectral

filtering method or parame-

ters such as band separation
or band width determine the tradeoff be-

tween temporal and frequency resolu-

tion. That the authors provide the

computer code for their analysis will defi-

nitely help to systematically explore such

questions.

What can these findings tell us about the

generators of brain activity? The ECoG

represents a measure related to local field

potentials. The cortical sources and

biophysical properties of field potentials

have been a matter of considerable in-

terest and several recent studies investi-

gate their biophysical sources, their

spatial specificity, and the coupling be-

tween field potentials and spiking activity

(see e.g., Bédard and Destexhe, 2009;

Logothetis et al., 2007; Pettersen and

Einevoll, 2008). The overall shape of field

potential spectra is a result of the superpo-

sition of many processes that cover a

range of timescales (spikes, postsynaptic

potentials, afterpotentials, etc.), and the

macroscopic trace of each individual

process in turn reflects the biophysical

constraints on the generating currents.

Coupling of faster and slower components

of the aggregate field potential could thus

reveal dependencies of different compo-

nents of the compound signal. As such,
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frequency coupling could be used to

constrain models of field potential genera-

tion. In turn, such models could also be

used to elucidate whether there are in-

deed processes of distinct frequencies

that are coupled in the described manner.

Such combined model and data-driven

investigations will be necessary to ulti-

mately decide whether the reported

crossfrequency coupling actually consti-

tutes a phenomenon with biological sour-

ces and relevance.

On the whole, these new results draw

attention to the arrhythmic components

of neural mass activity and highlight that

also apparently unspectacular and often

ignored signals can reveal surprisingly

complex structure.
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In this issue of Neuron, Remme and colleagues examine the biophysics of synchronization between oscil-
lating dendrites and soma. Their findings suggest that oscillators will quickly phase-lock when weakly
coupled. These findings are at odds with assumptions of an influential model of grid cell response generation
and have implications for grid cell response mechanisms.
As our moon orbits the Earth, it rotates.

Yet on Earth we see only one face of the

moon. This happens because the moon

happens to rotate by exactly the same

amount that it revolves. The matching of

angular speeds for rotation and revolution

is no coincidence. It is the inexorable

result of the periodic movements of the

earth and moon combined with the weak

gravitational tidal forces coupling them.

In the language of the theory of coupled

oscillators, the moon’s rotation and revo-

lution have converged to the stable

phase-locked solution.

In this issue of Neuron, Remme et al.

(2010) use the theory of weakly coupled

oscillators to provide a compelling anal-

ysis of the biophysical viability of an influ-

ential model of grid cell response genera-

tion. Rats and mice (Fyhn et al., 2008 and
references therein) have grid cells, and

there is good evidence for their presence

in humans (Doeller et al., 2010). A single

grid cell responds as a function of animal

location in two-dimensional (2D) space,

with a firing peak at every vertex of

a (virtual) regular triangular lattice that

covers the plane. The spatial period of

the grid cell response is independent of

animal speed.

Models of grid cell activity fall into two

main classes, both predicated on the

hypothesis that position-coded grid cell

responses are obtained using animal-

velocity cues. Aside from this shared

hypothesis, the model classes are dispa-

rate in their assumptions and predictions,

with each class explaining largely com-

plementary subsets of grid cell properties.

One model class assumes that strong
network-level recurrent connectivity un-

leashes a spontaneous patterning of the

neural population response (Fuhs and

Touretzky, 2006; McNaughton et al.,

2006; Burak and Fiete, 2009, and refer-

ences therein). These population

responses translate into spatially periodic

responses of single neurons. The other

model class assumes that interfering

temporal oscillations set up a beat wave

that can be mapped onto space to

produce spatially periodic grid responses

(Burgess et al., 2007; Hasselmo, 2008).

Remme and colleagues analyze an

exemplar of the temporal interference

(TI) models, based on voltage oscillations

within a single neuron (Burgess et al.,

2007). The model may be summarized

as follows: if the soma oscillates at a fixed

temporal frequency, and a dendrite
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